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An approximate (linearised) Riemann solver is presented for the solution of the Euler
equations of gas dynamics in one dimension with a general convex equation of state. The
scheme is applied to a standard shock reflection test problem for some specimen equations of
state.  © 1988 Academic Press, Inc.

1. INTRODUCTION

The linearised approximate Riemann solver of Roe [1] was proposed in 1981 for
the solution of the Euler equations of gas dynamics where the properties of the fluid
are represented by the ideal equation of state. We seek here to extend this scheme
to the solution of the Euler equations in one dimension for real gases. At each stage
we shall as far as possible draw a parallel with Roe’s scheme for the ideal equation
of state. Results for the extended scheme are presented for a particular problem of
shock reflection for three different equations of state.

In Section 2 we look at the Jacobian matrix of the flux function for the Euler
equations with a general convex equation of state, and in Section 3 derive an
approximate Riemann solver for the solution of these equations. In Section 4 we
give some particular examples of nonideal equations of state, and in Section 5 we
describe a standard test problem involving shock reflection. Finally, in Section 6 we
display the numerical results achieved for this test problem with three different
equations of state.

A construction with similar objectives has been proposed by Roe [2] which,
however, differs in both procedure and final form.

* This work forms part of the research programme of the Institute for Computational Fluid Dynamics
at the Universities of Oxford and Reading and was funded by A-W.R.E., Aldermaston under Contract
NSN/13B/2A88719.
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2. EQUATIONS OF FLOW AND STATE

In this section we state the equations of motion for an inviscid compressible fluid
in one dimension for any equation of state, and derive the eigenvalues and eigen-
vectors of the Jacobian of the corresponding flux function.

2.1. Equations

The Euler equations governing the flow of an inviscid, compressible fluid in one
dimension may be written in conservation form as

w,+F =0, (2.1)
where
w=(p, pu, e)" (2.2)
F(w)= (pu, p+ pu?, u(e + p))T, (2.3)
together with
e = pi+ipu?, (24)

where p=p(x, t), u=u(x, t), p=p(x, t), i=i(x, t), and e = e(x, t) represent the den-
sity, velocity, pressure, specific internal energy, and the total energy, respectively, at
a position x and time ¢ Equations (2.1) represent conservation of mass, momen-
tum, and energy. In addition, there is an equation of state which is a macroscopic,
thermodynamic relationship specific to each particular fluid, and we assume here
that this can be written in the form

p=p(p,i). (2.5)

The function p(-,-) will be assumed to satisfy conditions which ensure that the
system (2.1) is hyperbolic and the corresponding Riemann problem always
possesses a unique solution (see [3]). Furthermore, we shall assume that the first
derivatives dp/dp |, and Op/di|, are available. In the case of an ideal gas, Eq. (2.5)
becomes

p=u—1)pi (2.6)

where y is the ratio of specific heat capacities of the fluid: this is sometimes called a
y-gas law. The relationship given in Eq.(2.5) will usually be determined by
experimental considerations.

2.2. Jacobian

We now construct the Jacobian, A4, of the flux function, F(w) given by

A =0F/ow, (2.7)
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and find its eigenvalues and (right) eigenvectors since this will form the basis for

our approximate Riemann solver.

Defining the momentum m as m = pu we may rewrite Eqgs. (2.2), (2.3), and (2.5)

in the form
w=(p, me)’
2 T
Fw) = (mp+ 2, 2 4 22)
p’p p
and
p=p(p, i),
where
;€ 1 m?
= 3,7
Now,
6F_(8F OoF oF
ow \0pl|,. om|,. del,n

and,/in particular, we will need to find, (8p/dp)(p, i(p,m,e))l,.

and (dp/de)(p, i(p, m, €))|, .- By the chain rule for partial
have

i3 o

Eeipme)| =L fr%“” m,e)
Py, ito.m ) 257;‘ (0. m,¢) ,,,,.,%Iz;(”’ i
2 (o, i(p, m, ) N =2 (ome) y 2 (o)
where
1=z(p,m,e)-———l—m—22.

(2.8a)

(2.8b)

(2.8¢c)

(2.8d)

(2.9)

o (Op/om)(p,i(p,m,e))|, .,
derivatives, however, we

op

5 (p, i) (2.10a)

m,e P

(2.10b)

, (2.10c)

(2.11)
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This leads to the following expression for the Jacobian

0 1 0
RSN LS SRS WL JR
A= p p p ; (2.12)
wa—H) =i H-w) H-LP 2
p p P
where the enthalpy, H, is defined by
=2l i (2.13)
p P 2
the “sound speed,” a, is given by
a2=’-;§+p,,, (2.14)

and we use the shorthand notation p, = (8p/0p)(p, i)|;, p,= (0p/0i)(p, i),
The eigenvalues, 4;, and corresponding right eigenvectors, e;, of 4 are then found

to be v
1 1
+
A=u+a, e = R u-li-a , (2.15a)
H+ua P iv-wtua
p 2
1 1
do=u—a, e=|""7 )= ”1_“ : (2.15b)
H—ua £+i+§u2——ua
and
1
2.3:”, e3= u az = 1 u . (2.150)
il B R
pi 2 pi

We note that in the case of an ideal gas the equation of state (2.8c) becomes
p=@—1)pi (2.16)

giving
pi=(y—1p, p,=@—-1)i (2.17)



386 P. GLAISTER

and thus

a’ 1

y—1 p 27 p(y—1)

(2.18)

In particular, the eigenvectors e,, e,, e; become

1 1
e, = u+a e = u—a or— u
@ 1, ’ 2 @ 1, ’ o B
y_1+§u + ua y_1+§u —ua Eu

(2.19a)-(2.19c)

In the next section we develop an approximate Riemann solver using the results
in this section.

3. AN APPROXIMATE LINEARISED RIEMANN SOLVER

In this section we develop an approximate Riemann solver for the Euler
equations in one dimension with a general convex equation of state. We follow a
similar course of reasoning as that used by Roe and Pike [4] in the ideal gas case
and begin by giving a brief description of their algorithm.

3.1. The Approximate (Linearised) Riemann Solver of Roe and Pike for an Ideal Gas

Given two states w,, wg (left and right) of a gas close to an average state w, seek
coefficients o, a,, a5, such that, if e, e,, e; are the eigenvectors of the Jacobian
matrix for the ideal gas flux function (2.19a)-(2.19¢)

Aw=Y ae, (3.1)

to within O(4?), where 4(-)=(-)g — (+).. This gives the expressions

1
o) =5 (4p + pa Au) (3.2a)
2a
1
o, =7 (4p — pa 4u) (3.2b)
2a
4
a3=Ap—a—’2’, (3.2¢)

and it can also be shown that with the same values of «,, a,, a,

3
AF =3 e, (3.3)
j=1
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where 4,, 4,, A, are given by Eqgs. (2.15a)-(2.15c). The decomposition (3.1) yields
exact characteristic fields to O(4?). The approximate Riemann solver is then con-
structed by seeking averages g, %, @ such that, for states w; and wg, not necessarily

close,
3
4w = Z 4;€;
j=1
and
3
aF = T,

(i.e. (3.1) and (3.3) with averaged values) hold, where now

~

11‘2‘3=t~l+5, ﬁ—‘&,u

and

2
— <
“2=ﬁ (dp — pa 4u)
a

The required averages are found to be

P=+/PLPR
ﬁ=\/EuL+ PRUR
PL””\/E

&=y~ 1) A~ 4),

and

where

N RN
NN/

(3.4)

(3.5)

(3.6a)-(3.6c)
1

u

ﬁZ

N -

(3.7a)-(3.7¢)

(3.8a)

(3.8b)

(3.8¢c)

(3.9)

(3.10)

(3.11)

(3.12)
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and H=(e+p)/p is the enthalpy. The approximate Riemann solver can then be
implemented in a finite difference scheme as follows (see [4]).

Suppose at time level » the approximate solution consists of a set of piecewise
constants

={WLXE(XL—%AX,XL+%AX) (3.13)

Wg X € (xg — 14x, xg + 14x),

where 4x =xy — x represents a constant mesh spacing. Thus at either end of the
cell (x., xg) the data is w;, wy. The solution w may be updated to time level n+ 1
in an upwind manner as shown schematically in Fig. 1, where 4z is the time interval
from level n to level n+ 1. This approximate Riemann solver has the important
shock-capturing property guaranteed by Eqs. (3.4)-(3.5) (see [1]).

We now use a similar course of reasoning to construct the linearised approximate
Riemann solver for a general convex equation of state.

3.2. Wavespeeds for Nearby States

Consider two states w;, wy (left and right) close to an average state w, and seek

oy, O, a3, such that
3

aw=Y we; (3.14)
=1
to within O(4?), where A(-)=(-)g — (-). (cf. (3.1)). Writing Eq. (3.14) out in full
we have

Ap=<x1+a2+0t3 (3153)
Alpu)=a(u+a)+o(u—a)+oasu (3.15b)

de=uq, <§+i+%u2+ua)+a2 <%+i+%u2—ua>+fx3 (i+%u2—£‘§i‘3>. (3.15c)
From Eqgs. (3.15a)-(3.15b) we have that

A(pu)—udp=ala, —a,) (3.16)
and from Egs. (3.15a) and (3.15¢),

2
1
A(pi)—idp+ 4 (%) ~5 wdp =§ (o) +o5) +ualo, —ay) —oy %’ﬁ. (3.17)

1

Using Eq. (3.16) together with a, +a,=4p—a,, Eq.(3.17) yields the following
equation for a5:

. z 2
(55—’+ppp) =1idp— A(pi) +§Ap—32— dp—4 (%‘—) +ud(pu). (3.18)

o3
Pi
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Then, since
PP
pa2=7+pp,,, (3.19)
a5 18 given by
203 . , 14 u? puz
pa p—=zAp—A(pl)+;Ap——?Ap—A > + u A(pu). (3.20a)

The coefficients o, and a, can now be calculated from Eqgs. (3.15a) and (3.16), i.c.,

a1+d2=Ap—a3 (3.20b)

A(pu) —udp
p .

oy — 0ty = (3.20c)

We have made the assumption that the left and right states w_, wy are close to
some average state w to within O(4?), so that, to this approximation

Alpu)y=udp+p Au ‘ (3.21a)
Alpi)=idp+p di (3.21b)
A(pu®)=u® Ap + 2pu Au. (3.21¢)

In that case Eq. (3.20a) gives
pa22=§Ap—p 4i, (3.22)

and using Eq. (3.19) we obtain

(p, 4p + p; Ai)
A Ay

oy =dp— (3.23)
But
Ap=p,dp+p; Ai (3.24)
to within O(4?), and therefore
A
ay=4p—=F. (325)

Finally, Eqs. (3.20b)}-(3.20c) become

a, + o, = Ap/a? (3.26)
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and
o, — oy = p Adu/a,

to give the following expressions for «,, a,, and a5,

1
oc1=2—az(Ap+paAu)

1
2% =Zz' (4p — pa 4u)

and
ay=Adp— Ap/a’.

We have found «,, a,, a5 such that

to within O(4?), and a routine calculation verifies that

3
AF =) Aoe;
i=1

(3.27)

(3.28a)

(3.28b)

(3.28¢)

(3.29)

(3.30)

to within O(42). We are now in a position to construct the new approximate

Riemann solver.

3.3. Decomposition for General wy, Wy

As in Roe and Pike [4], we consider the algebraic problem of finding average
eigenvalues 1,, 1,, 4, and corresponding average eigenvectors &, &,, &; such that
the relations (3.29) and (3.30) hold exactly for arbitrary states w;, wi not
necessarily close. Specifically, we seek averages g, i, p;, p,, p, and 7 in terms of two

adjacent states w, , wy such that

3
Aw = Z ~1"1
Jj=1
and
3
AF =Y 14,8,
j=1
where
4¢)=()r~(n

w=(p, pu, e)’

(3.31)

(3.32)

(3.33a)
(3.33b)
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F(w)=(pu, p+ pu’, u(e +p))" (3.33¢)
e = pi+ Jpu? (3.33d)
p=p(p,i) (3.33¢)
Tias=ii+a,a—ai (3.34a)
1 1
o= . uTa A - ul—a : 1” . (3.34b)
P tizw+raal \Bvivca—an | \ivsar—2Le
i 2 i 2 2 D
1
5y == (4p + pa 4u) (3.35a)
2d
- 1 .
&) === (4p — pd du) (3.35b)
24
4
073=Ap—a—12), (3.35¢)
and 4 is given by
ﬁa2=%‘+ﬁ"p. (3.36)

The problem of finding averages p, &, j;, p,, p, and 7 subject to Egs. (3.31)~(3.36)
will subsequently be denoted by (). (N.B.The quantities p;, and 7, denote
approximations to the partial derivatives p, and p,, respectively.)

The solution of problem (x) will be sought in a way similar to that adopted by
Roe and Pike [4] in the specialised, ideal gas case (see Section 3.1). We note,
however, that problem () is equivalent to seeking an approximation A to the
Jacobian A with eigenvalues 1, and eigenvectors &, which is an alternative
approach also used in the ideal gas case by Roe [1].

The first step in the analysis of problem (*) is to write out Eqgs. (3.31) and (3.32)
explicitly, namely,

Apu) =G, (i + @) + ol — &) + &, (3.37b)
2 51
Ae:A(,oi)M(ﬂ):&l (3+7+—a2+aa)
2 p 2
+d, £+7+1ﬁ2—ﬁ")+&3 7+1a2—31-’£) (3.37¢)
p 2 2 B,
Alpu) = &, (it + &) + &y — @) + G0 (3.37d)

A(p+ pu®) = Ap + A(pu?) = &, (il + @)* + &, (il — @)* + &, it (3.37¢)

581/74/2-9
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and
u? wm o ofD L
A(u(e + p)) = A(pui)+ 4 5 +A(up)=a1(u+a)5+l+§u + id
1 1 . 55
+ (i~ a)( +z+—a2—aa)+a3a<7+—a2—ﬁfifl). (3.370)
7] 2 2 Pi

Equation (3.37a) is satisfied by any average we care to define, while Eq. (3.37b) is
the same as Eq.(3.37d). Thus it remains to satisfy Egs. (3.37¢)-(3.37f). From
Eq. (3.37d) we have

Alpu) = (@, + &, + &) + d(%, — )
~iidp+p Au (3.38)
and from Eq. (3.37e) we obtain
A(pu?) = X (&, + &, + &) + 2aa(d, — &,)
=ii> Ap + 2p Au. (3.39)

Substituting for § from Eq. (3.38) into Eq. (3.39) yields the quadratic equation
for @,

#? Ap —2ii A(pu) + A(pu*)=0. (3.40)
Only one solution of Eq. (3.40) is productive, namely,

5 Alou) =/ (A(pu))* — dp A(pw?)
4p

and a routine calculation yields

\/_\/"_Li*/\/:”‘* (3.41)

which, on substituting # into Eq. (3.38), gives

. (puy—u 4
=20 IR_ foion. (3.42)

We have now determined j and #, and with these we can show that

pu i’ pit* (du)® p*
Y. | 4 3 — 343
(2) T35 dum s (349
u( pL(PL/pL)"'\/pR(pR/pR))’ (3.44)

Aup)—iadp=p 4
pPL+/Pr
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and
JPLutoruy  ,  p(du)’ ’ (3.45)

N/ N/ N N/

all of which will be used later.
We are now left with Egs. (3.37¢) and (3.37f) and begin by rewriting them, using

Eqgs. (3.35)-(3.36), to give
PAp g 5000 (3.46)
pa D;

A(pi

and

Now, subtracting Eq.(3.46) multiplied by & from Eq.(347) and using
Eqgs. (3.43)-(3.45) together with the identity
(v PLiL ++/PriR)

A(pui) — ad(pi)=p Au ,
) g Jou+/ox

we obtain, after division by j du,

(ﬁ(p Fi 4= u,_>+\/_< +ig+= uR)>/\/_+\/_)

(3.48)

NI*—‘

Erivza
p

Therefore, if we define a mean enthalpy, H, by

(3.49)

B=S+1+

o

we find, from Eq. (3.48), that
= \/Iﬁﬁ \/__VH“ (3.50)
+4/Pr

as in the ideal case. We have now specified g, i, §/p +1: thus, in order to specify j,,
P, 1 (and hence p), we focus our attention on Eq. (3.46) which can be written as

(3.51)

A(pi) =T dp—j Ai+ g(ﬁ,-Ai+ﬁ,,Ap—Ap)=0.
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A number of choices can now be made, but it is clear that the most natural choice
is to take

A(pi)—Tdp—p 4i=0, (3.52)
ie.,
7=A(Pi)_ﬁ4'i=\/ PLiL++/Prir (3.53)

TN

in which case (3.51) gives
dp=p,4i+p,dp (3.54)

as a necessary condition. Therefore, all we need to do to complete the approximate
Riemann solver is to choose approximations j;, j, to p;, p, such that (3.54) holds.
This is a straightforward matter.

We propose approximations f;, p, to p; and p, as follows:

1/1 . 1 . , . .

(3 0poms i)+ plor. i1 =3 Lo, i) +por )] i dit0
b=

1 ' _ _ NP (3.55a)

E[pi(pL’l)"-Pi(pR’l)] if 4i=0,i=ig=1i (3.55b)
and

1 /1 . . 1 . . .

25 (5 Lptons i) 2o, 101 =5 Lolors i) +plpL.7)T) i 4p#0
Bo=1{ (3.56a)

3 [Pop i) +py(p,i)] i 4p=0,p1=pr=p. (3.56b)

It is a simple matter to check that, for each of the combinations arising from the
approximations given by Eqgs. (3.55a)-(3.56b), Eq. (3.54) is satisfied. In particular, if
the equation of state is separable, i.e., consists of a series of terms of the form
p=9%R(p) I(i) where %, I depend on p, i, respectively, then Eqgs. (3.55a)-(3.56b)
become

_ Al ,

R— if 4i#0 (3.57a)
. 4i
pi=

RI'(i) if 4i=0,ip=ix=1i, (3.57b)

and

AR .

IA—p— if 4p#0 (3.58a)
Po=

IR (p) if dp=0,p =pr=p, (3.58b)
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where 4(-)=(-)g—(+). as before, and ~=1[(-).+(-)g], the arithmetic mean.
Although Egs. (3.55a)-(3.56b) are not the only choices for §;, j,, these expressions
represent a natural extension of the approximations given by Egs. (3.57a)-(3.58b).
In particular, we note that for any particular equation of state equations
(3.55a)~(3.56b) can be simplified and the resulting expressions can be incorporated
into a finite difference code in such a way as to avoid function evaluations.
Summarising, we can implement the above one-dimensional Riemann solver for
the Euler equations with a general convex equation of state in a finite difference
scheme in a similar way to that of Roe and Pike [4] as follows. Suppose at time
level n we have data w_, wy given at either end of the cell (x,, xg). Then we update
w to time level n+1 in an upwind manner (cf. Section 3.1). Schematically, we
increment w as in Fig 1, where Ax = xi — x, 4t is the time interval from level n to

n+1, and 1,, &, & are given by

Ay ps=id+aid—a,i

1 1
. i+a ii—a i
€123 - M~ s o
o P 1, . P . 1., .. oLl P,
= = —+i+- U —~ua i+=-i —p—=—
ﬁ+t+2u +ua F 2“ U 3 pP,-
4p

~ 1
%123= 52 (Ap+pa )2~2(Ap pa Au), Ap—-—-

\/—uL+\/—uR
N A

\/—1L+\/_-1R \/_HL+\/__HR
Jret f R

!

|'u

P + 5,

™
[ ¥]

P, P, are given by Egs. (3.55a)—(3.56b), and 4(-)=(-)g —(-).. In addition, we can
use the idea of flux limiters [5] to create a second-order algorithm which is

~ o~ o~

At st
nrt T %S (\' B M5%5%
! |

L R L R

~

A. >0 A. <D0 3
J J

1,2,3

FiG. 1. Schematic representation of the first order algorithm.
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oscillation-free, and we can modify the scheme to disperse entropy violating
solutions (see [6]).

The Riemann solver we have constructed in this section is a conservative
algorithm and has the important shock-capturing property guaranteed by
Eqgs. (3.31)-(3.32) (see [1]). In the next section we give examples of different
equations of state.

4. EQUATIONS OF STATE

In this section we give three different forms of the equation of state for a fluid.

(a) Ideal gas equation of state. This can be written in the general form
p=(—-1)pi (4.1)

where y is a constant and represents the ratio of specific heat capacities of the fluid.
Typical values for y are y =3 for a monatomic gas, e.g., helium, and y= 1.4 for a
diatomic gas, e.g., air.

(b) Stiffened equation of state. This is usually written in the form

p=B(ﬂ—1)+(v—1)pt, 42)
Po

where B is a constant, and p, represents a reference density. This form of the
equation of state is a simple extension of the ideal gas equation, and as such can be
used in test problems originally designed for ideal gases.

{c) General equation of state. A more general equation of state has been
developed by R. K. Osborne at the Los Alamos Scientific Laboratory [7], and can
be written in the form

p=[/(E+¢o)1{l(a, +a,|{])
+ E[bo+{(by +b50) + E(co+ ¢, {) 1}, (43)

where E=pyi, {=p/po—1 and the constants p,, a,, a,, by, by, by, cq, €1, Po
depend on the material in question. Typical values for the material constants for
copper are given in Section 6.

Our algorithm requires knowledge of the derivatives p;, p, which can be
explicitly calculated in each of the three cases (a), (b), (c). The most general
equations of state may be presented in tabular form, but provided that data is
available for p, p; and p,, we can always apply our algorithm as in cases (a)-(c).

In the next section we describe a standard test problem for the Euler equations
with a general convex equation of state.
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5. A TEST PROBLEM

In this section we describe a standard test problem in gas dynamics.

The test problem we consider is concerned with shock reflection in one dimen-
sion of a gas governed by the Euler equations with a general equation of state. We
consider a region 0 < x < 1 with initial conditions (at 1 =0),

P=Po
u= —ug, (5.1)

i=i01

where po = p(po, io) is given. This represents a gas of constant density and pressure
moving towards x =0 (see [8]). The boundary x =0 is a rigid wall and the exact
solution describes shock reflection from the wall. The gas is brought to rest at x=0
and, denoting initial values by (0), pre-shocked values by (—), and post-shocked
values by (+), we can postulate an exact solution of the form

p=p*, u=ut =0, i=i*, (p=ptr=p(p*,i*)) for x/t<S
(5.2a)
p=p-, u=u =-—u,, i=i =i, (p=p~ =po=p(po,ip)) for x/t>S§,
(5.2b)

where the shock moves out from the origin with speed S, and S, p*, i*, p* =
p(p*,i*) are given by the Rankine-Hugoniot shock relations. Thus

_Lp] _[ptp’]_[uletp)] (5.3)

=101 toud [el

where [v]=v" —v~ denotes the jump in v across the shock. The solution of
Egs. (3.3) for S, p*, i™, p* subject to the initial conditions given by Eq. (5.1), and
a precise form for the equation of state p = p(p, i), is given by Glaister [9].

In the next section we give the numerical results obtained for the test problem
considered here.

6. NUMERICAL RESULTS

In this section we show the numerical results obtained for the test problem given
in Section 5 using the Riemann solver described in Section 3. Each of Figs.2-10
refers to one of the equations of state given in Section 4 with different values of the
parameters and initial conditions.
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(a) Ideal equation of state. We take y =3 with the initial data

p(x,0)=po=1
u(x,0)= —upy= —1

and choose i(x, 0)=1i, such that the pressure jump across the shock, ie., p*/p~,
takes the values oo, 10, or 2.

(b) Stiffened equation of state. The parameters and initial data are taken to
have the same values as for (a) and we choose B=1.0. Three pressure ratios are
obtained as for (a).

(c) General equation of state for copper. We consider the general equation of
state given by Eq. (4.3) with values for the parameters corresponding to copper, i.c.,

po=8.90, a,=49578, a,=3.6884,
bo=74727,  b,=11519,  b,=55251,
co=039493, ¢, =052883,  ¢,=3.6000,

together with the initial data
p(x,0)=po=8.9

u(x,0)=—uyg=—1.

Again we choose i(x, 0) =i, such that the pressure ratio p*/p~ takes the three
values oo, 10, or 2.

In each case we take 100 mesh points in 0 < x < 1, and choose the output time so
that the shock has moved a distance of 0.3. All computations have been done using
a second order scheme with the “superbee limiter” (see [5]). We can see that the
approximate solution gives a good representation of the exact solution, in par-
ticular, the correct shock speed has been achieved. The results obtained using the
first-order algorithm only are not distinguishable from those given here.

Finally, we compare the c.p.u. time to compute the results obtained for the ideal
gas case (a) using (i) Roe’s original Riemann solver, and (ii) our general Riemann
solver applied to the ideal gas case. The comparison, using an Amdahl V7, is as
follows:

(i) Using “superbee” and 100 mesh points takes 0.0142 c.p.u.s to compute
one time step, and a total of 1.6 c.p.u. s to reach a real time of 0.9 s using 112 time
steps.

(ii) Using “superbee” and 100 mesh points takes 0.0178 c.p.u.s to compute
one time step, and a total of 2.0 c.p.u. s to reach a real time of 0.9 s using 112 time
steps.

This shows that our general Riemann solver is only slightly more expensive than
Roe’s original, as was to be expected. If we substitute the form of the ideal equation

581/74/2-10
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of state into Egs.(3.55a)-(3.56b), however, and incorporate the resulting
expressions into the finite difference code, we find that the two Riemann solvers are
comparable in execution time.

7. CONCLUSIONS

We have extended the one-dimensional version of Roe’s scheme to incorporate a
general convex equation of state and have achieved satisfactory results for the
shock reflection problem. In addition, we have seen that the algorithm is com-
putationally efficient. This scheme can be extended to three dimensions incor-
porating operator splitting. Details of this extension together with a two-dimen-
sional calculation of the flow in a tunnel containing a step involving interacting
waves are given by Glaister [10].

There may be scope for improving the efficiency of our scheme using the ideas of
Colella and Glaz [11] on efficient solution algorithms for the Riemann problem for
real gases and the work of Harten [12] on the symmetrisation of systems of
conservation laws which possess entropy functions.
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